profile-img
The merit of an action lies in finishing it to the end.
slide-image
์ „์ฒด ๊ธ€ + 29
list_img
Chapter 8. Linear Algebra
user-img iamnotwhale
2023.04.13
Linear Algebra / ์„ ํ˜•๋Œ€์ˆ˜ํ•™ - matrix์˜ ์ˆ˜ํ•™ - ๋ฐ์ดํ„ฐ ๊ณผํ•™์—์„œ ์ค‘์š”ํ•œ ์—ญํ•  n * m matrix๊ฐ€ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ row column Data object features Geometric Point Sets point dimensions Systems of equations equations ๊ฐ ๋ณ€์ˆ˜์˜ coefficient - Graphs/Networks: M[i, j] = vertex i -> vertex j edge ๊ฐœ์ˆ˜ - Vectors: any row, column or d*1 matrix Vector ์‚ฌ์ด์˜ ๊ฐ - ๋ฒกํ„ฐ A์™€ B ์‚ฌ์ด์˜ ๊ฐ๋„ - cos(0) = 1 ---> perfect similarity = 0 - cos(pi/2) = 0 ---> ๊ด€๋ จ์ด ์—†๋‹ค - ..
list_img
Chapter 7. Mathematical Models
user-img iamnotwhale
2023.04.12
Data Science Analysis Pipeline - Modeling: ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋„๊ตฌ๋กœ ์ •๋ณด๋ฅผ ๊ฐ์‹ธ๋Š” ๊ณผ์ • - ํ•ต์‹ฌ ๊ณผ์ •: building, fitting, validating the model Philosophies of Modeling 1. Occam's Razor - 14์„ธ๊ธฐ ์˜๊ตญ ์ˆ˜๋„์Šน - ๋œป: ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ ์„ค๋ช…์ด ๊ฐ€์žฅ ์ข‹๋‹ค. - ๊ฐ€์žฅ ์ ์€ ๊ฐ€์ •์„ ๋งŒ๋“œ๋Š” ๋‹ต์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค. -> ๋ชจ๋ธ์—์„œ parameter์˜ ์ˆ˜๋ฅผ ์ค„์—ฌ์•ผ ํ•จ์„ ์˜๋ฏธ - LASSO/ridge regression ๋“ฑ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์€ ํ”ผ์ณ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด penalty function์„ ์‚ฌ์šฉ -> ๋ถˆํ•„์š”ํ•œ coefficient๋ฅผ ์ตœ์†Œํ™” 2. Bias-Variance Tradeoffs - "๋ชจ๋“  ๋ชจ๋ธ์€ ํ‹€๋ฆฌ๋‹ค. ๊ทธ๋ ‡์ง€..
list_img
Chapter 6. Visualizing Data
user-img iamnotwhale
2023.03.27
Exploratory Data Analysis - ๋ฐ์ดํ„ฐ๋ฅผ ์ž์„ธํžˆ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ์ด์œ  * ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, ์ „์ฒ˜๋ฆฌ์—์„œ์˜ ์‹ค์ˆ˜ ๊ตฌ๋ณ„ * ํ†ต๊ณ„์  ๊ฐ€์ •์„ ์–ด๊ธฐ๋Š” ๊ฒฝ์šฐ๋ฅผ ํŒŒ์•… * ๋ฐ์ดํ„ฐ ํŒจํ„ด ํƒ์ƒ‰ * ๊ฐ€์„ค ์„ค์ • Anscombe's Quartet - ๊ฐ™์€ ํ‰๊ท , ํŽธ์ฐจ, ์ƒ๊ด€๊ด€๊ณ„, ํšŒ๊ท€์ง์„ ์„ ๊ฐ€์ง€์ง€๋งŒ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ ๋ชจ์–‘ ์ž์ฒด๊ฐ€ ๋งค์šฐ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Œ. Mapping Data to Image - ํšจ์œจ์„ฑ ์ˆœ์œ„: ์œ„์น˜ > ๊ธธ์ด > ๊ธฐ์šธ๊ธฐ, ๊ฐ๋„ > ๋ฉด์  > ์ƒ‰ ์ง„ํ•˜๊ธฐ > ์ƒ‰, ๋ชจ์–‘ - ๋ฉด์ , ์ƒ‰ ์ง„ํ•˜๊ธฐ ๋ฐ์ดํ„ฐ๋Š” ordinal data์— ์‚ฌ์šฉ ๊ฐ€๋Šฅ - ์›๊ทธ๋ž˜ํ”„๋Š” ๋ฉด์ ๊ณผ ๊ฐ๋„๋ฅผ ๊ฐ™์ด ์‚ฌ์šฉํ•˜์ง€๋งŒ, ๋„๋„› ๊ทธ๋ž˜ํ”„๋Š” ๊ฐ€์šด๋ฐ๊ฐ€ ๋น„์–ด์žˆ์œผ๋ฏ€๋กœ ๊ฐ์ด ์ƒ๋žต๋œ ํ˜•ํƒœ๋‹ค. - ๊ฐ€์žฅ ๋น„ํšจ์œจ์ ์ธ ์‹œ๊ฐํ™” ์‚ฌ๋ก€ - ์ƒ‰์˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๊ฒฐ์ • - ์ง€๋‚˜์น˜๊ฒŒ ..
list_img
Chapter 5. Statistical Analysis
user-img iamnotwhale
2023.03.26
Central Dogma of Statistics Statistical Data Distributions - ๋ชจ๋“  random variable์€ ํŠน์ • ๋นˆ๋„/ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ๊ฐ–๋Š”๋‹ค. - ์ข…๋ฅ˜: binomial distribution, normal distribution, poisson distribution, power law distribution Classical Distribution์˜ ์ค‘์š”์„ฑ - ์‹ค์ œ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๋„ ์žˆ์Œ - Closed-form formula(cdf, pdf), test(t-test) ๋“ฑ์„ ์ด์šฉ ๊ฐ€๋Šฅ - ๋ชจ์–‘์ด ๋น„์Šทํ•˜๋‹ค๊ณ  ์ด๋Ÿฌํ•œ ๋ถ„ํฌ์™€ ๊ฐ™๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋ฉด ์•ˆ ๋œ๋‹ค. Binomial Distribution - n๊ฐœ์˜ independent trial๋กœ ์ด๋ฃจ์–ด์ง„ ์‹คํ—˜ -> 2๊ฐ€์ง€์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€..
list_img
Chapter 4. Scores and Rankings
user-img iamnotwhale
2023.03.25
Scores and Rankings - Scoring functions: ๋‹ค์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ ๋‹จ์ผ ๊ฐ’์œผ๋กœ ๋ณ€๊ฒฝํ•˜์—ฌ ํŠน์ • ์„ฑ์งˆ์„ ๊ฐ•์กฐํ•˜๋Š” ๋ฐฉ๋ฒ• - Rankings: ์ ์ˆ˜๋ฅผ ์ •๋ ฌํ•˜์—ฌ ํ•ญ๋ชฉ์˜ ์ˆœ์œ„๋ฅผ ๋งค๊น€ Assigning Grades - ํ•™์ ์€ scoring function์œผ๋กœ ๋ถ€์—ฌ๋œ๋‹ค. - ํŠน์ง•: ์ž„์˜์„ฑ (๊ต์ˆ˜๋‹˜๋งˆ๋‹ค ๊ธฐ์ค€์ด ๋‹ค๋ฆ„), validation data ์—†์Œ ("์˜ณ์€" ๋“ฑ๊ธ‰์€ ์—†์Œ), general robustness (๋‹ค๋ฅธ ์ˆ˜์—…์ด์–ด๋„ ํ•™์ƒ๋งˆ๋‹ค ํ•™์ ์€ ๋น„์Šท๋น„์Šทํ•จ) Scoring vs. Regression - gold standard/right answer๊ฐ€ ์—†๋‹ค. - ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ์„ ํ˜• ํšŒ๊ท€ ๊ฐ™์€ ๊ฒฝ์šฐ๋Š” scoring function์„ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ์ง€๋งŒ ๋ณดํ†ต ๊ทธ๋Ÿฌ์ง€ ์•Š๋Š”๋‹ค. BMI ์ง€์ˆ˜ - BMI = m..
1 2 3 4 5 6