profile-img
The merit of an action lies in finishing it to the end.
slide-image

Statement = Proposition : ๋ช…์ œ

- ์ •์˜: ์ฐธ์ด๋‚˜ ๊ฑฐ์ง“์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์žฅ

- ์ข…๋ฅ˜

1) Universal Statement: ํ•œ ์ง‘ํ•ฉ์˜ ๋ชจ๋“  ์š”์†Œ์— ๋Œ€ํ•ด์„œ ์ฐธ

2) Conditional Statement: ํŠน์ • ์กฐ๊ฑด๋งŒ ํฌํ•จ

3) Existential Statement: ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์š”์†Œ๊ฐ€ 1๊ฐœ ์ด์ƒ ์žˆ๋‹ค.

4) Universal Conditional Statement: universal & conditional

5) Universal Existential Statement: ์ฒซ ๋ถ€๋ถ„์€ universal, ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์€ existential

6) Existential Universal Statement: ์ฒซ ๋ถ€๋ถ„์€ existential, ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์€ universal

 

Set : ์ง‘ํ•ฉ

- ์ •์˜: ํŠน์ • ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์š”์†Œ๋“ค์˜ ๋ชจ์ž„

- ex) { x | 0 < x < 5 }

 

Russell's Paradox

R = {x | x is a set and x is not an element of itself}

์ •์˜์— ๋”ฐ๋ฅด๋ฉด R์ด R์˜ ์š”์†Œ๋ผ๋ฉด, R์€ R์˜ ์š”์†Œ์ผ ์ˆ˜ ์—†๋‹ค.

๋˜ํ•œ, R์ด R์˜ ์š”์†Œ๊ฐ€ ์•„๋‹ˆ๋ผ๋ฉด, R์€ R์˜ ์š”์†Œ์ด๋‹ค.

-> ๋ชจ์ˆœ์ 

 

Cartesian product

A X B : Cartesian product of A and B

B X A : Cartesian product of B and A

์ •์˜: A X B = {(x, y) | x is a member of A, y is a member of B}

ex) A = {1, 2} / B = {3, 4} -> A X B = {(1,3), (1,4), (2,3), (2,4)}

 

Relation

- ๊ณต์ง‘ํ•ฉ์ด ์•„๋‹Œ ์ง‘ํ•ฉ A์— ๋Œ€ํ•ด A์— ๋Œ€ํ•œ relation = A X A์˜ subset

- ์ข…๋ฅ˜

1) Reflexive

ex) A = {1, 2, 3, 4}์ผ ๋•Œ

R1 = { (1, 1), (2, 2) } ๋ผ๋ฉด, ์ด ์ง‘ํ•ฉ์€ Reflexiveํ•˜์ง€ ์•Š๋‹ค.

์ด์œ : (3, 3), (4, 4)๊ฐ€ ์—†๋‹ค.

R2 = { (1, 1), (2, 2), (3, 3), (4, 4), (2, 3) } ๋ผ๋ฉด, ์ด ์ง‘ํ•ฉ์€ Reflexiveํ•˜๋‹ค.

์ด์œ : (1, 1)~(4, 4)๊ฐ€ ๋ชจ๋‘ ์žˆ๋‹ค. (2, 3)์€ ์ƒ๊ด€์ด ์—†๋‹ค.

 

2) Symmetric

ex) R3 = ๊ณต์ง‘ํ•ฉ์ด๋ผ๋ฉด, ์ด ์ง‘ํ•ฉ์€ Symmetricํ•˜๋‹ค.

์ด์œ : ์ง‘ํ•ฉ์—์„œ ์š”์†Œ๋“ค์˜ ์Œ์ด ์—†๊ธฐ ๋•Œ๋ฌธ์—

R4 = { (1, 2), (2, 1), (2, 2) } ๋ผ๋ฉด, ์ด ์ง‘ํ•ฉ์€ Symmetricํ•˜๋‹ค.

R5 =  { (1, 2), (2, 1), (2, 3) } ๋ผ๋ฉด, (3, 2)๊ฐ€ ์—†์–ด Symmetricํ•˜์ง€ ์•Š๋‹ค.

 

3) Transitive

R6 = { (1, 5), (5, 1), (1, 1) } ์ด๋ผ๋ฉด ๋งŒ์กฑํ•  ์ˆ˜ ์—†๋‹ค.

(1, 5), (5, 1) -> (1, 1) ์ด์ง€๋งŒ

(5, 1), (1, 5) -> (5, 5)๋„ ์žˆ์–ด์•ผ ํ•˜๋Š”๋ฐ ์—†๋‹ค.

1