profile-img
The merit of an action lies in finishing it to the end.
slide-image

Nearest Neighbor Classification

- ์–ด๋–ค training example์ด target์— ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด์ง€ ํ™•์ธํ•ด์„œ class label์„ ๋ถ™์ด๋Š” ๊ฒƒ

- distance function์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”

- ์žฅ์ : simplicity, interpretability, non-linearity

- k-nearest neighbor

 

Distance Metrics

๋‹ค์Œ๊ณผ ๊ฐ™์€ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒฝ์šฐ

- d(x, y) >= 0 for all x, y (positivity)

- d(x, y) = 0 iff x = y (identity)

- d(x, y) = d(y, x) (symmetry)

- d(x, y) <= d(x, z) + d(z, y) (triangle inequality)

 

Not a Metric

๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ž์—ฐ ์œ ์‚ฌ์„ฑ ์ธก์ • ๊ฐ’๋“ค์€ distance metric์ด ์•„๋‹ˆ๋‹ค.

- correlation coefficient (-1~1)

- cosine similarity, dot product

- mutual information measures

- cheapest airfare 

 

Euclidean Distance Metric

c_i : weighted sum

- ์ตœ์†Œํ•œ ์ •๊ทœํ™”๋ฅผ ํ†ตํ•ด ์ฐจ์›์„ ๋น„๊ต๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์•ผ ํ•จ

 

L_k Distance Norms

- ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‹ ์‚ฌ์šฉ

- k=1 ์ผ ๋•Œ, Manhattan distance metric

- k=∞ ์ผ ๋•Œ, maximum component 

- k๋Š” largest and total dimensional difference ์‚ฌ์ด์˜ tradeoff๋ฅผ ์กฐ์ ˆ

p1(2, 0), p2(1.5, 1.5) ์ค‘ (0, 0)์—์„œ ๋” ๋จผ ์ ์€?

- k=1์ผ ๋•Œ, k=2์ผ ๋•Œ, k=∞์ผ ๋•Œ ๋จผ ์ ์ด ๋‹ค๋ฅด๋‹ค.

- distance metric์€ ์–ด๋–ค ์ ์ด ๋” ๊ฐ€๊นŒ์šด์ง€ ์„ค์ •

 

Circles for different k

- L_k circle์˜ ๋ชจ์–‘์€ ์›์ ์— ๋Œ€ํ•ด ์–ด๋– ํ•œ ์ ์ด ๋™๋“ฑํ•œ ๊ฒƒ๋“ค์ธ์ง€ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ

 

Projections from higher dimensions

- Projection method (ex.SVD): ํ‘œํ˜„ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ฐจ์›์„ ์ถ•์†Œ

- nearest neighbor๋Š” ์›๋ž˜ ๊ณต๊ฐ„์— ๋น„ํ•ด ํ™•๊ณ ํ•ด์งˆ ๊ฒƒ

 

Regression / Interpolation by NN

- NN์ด๋ผ๋Š” ์ปจ์…‰์„ function interpolation์— ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

- k๊ฐœ์˜ ๊ทผ์ ‘ ์ ์˜ ๊ฐ’์˜ ํ‰๊ท ์„ ๋‚ด๋Š” ๋ฐฉ์‹

- weighted average scheme๋Š” (1) distance rank, (2) actual distances์— ์˜ํ•ด ๋”ฐ๋ผ ์ ๋“ค์„ ๋‹ค๋ฅด๊ฒŒ ๊ฐ’์„ ๋งค๊ธธ ์ˆ˜ ์žˆ๋‹ค.

- ๋ถ„๋ฅ˜์—๋„ ๋น„์Šทํ•œ ๋ฐฉ์‹์„ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

 

Gender Classification by Height/Weight

- k๊ฐ€ ์ปค์ง€๋ฉด ๋” ๋งค๋„๋Ÿฌ์šด ๊ตฌ๋ถ„์„ ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ

 

Seeking good analogies

- ๋งŽ์€ ์ง€์‹์˜ ๋ถ„์•ผ๋Š” analogy(๋น„์œ )์— ๊ธฐ์ดˆํ•ด ์žˆ๋‹ค.

* Law: ์–ด๋–ค ๋ฒ•์  ํŒ๋ก€๊ฐ€ ์ด ์‚ฌ๋ก€์™€ ๋น„์Šทํ•œ๊ฐ€?

* Medicine: ๋น„์Šทํ•œ ์ฆ์ƒ์„ ๊ฐ€์กŒ๋˜ ํ™˜์ž๋ฅผ ๊ณผ๊ฑฐ์— ์–ด๋–ป๊ฒŒ ์น˜๋ฃŒํ–ˆ๊ณ , ๊ทธ ํ™˜์ž๊ฐ€ ์‚ด์•„๋‚จ์•˜๋Š”๊ฐ€?

* Real Estate: ์ด์›ƒ ์ง€์—ญ์— ๋น„๊ต ๊ฐ€๋Šฅํ•œ ์ž์‚ฐ์ด ์–ด๋Š์ •๋„ ๊ฐ€๊ฒฉ์— ํŒ”๋ ธ๋Š”๊ฐ€?

 

Finding Nearest Neighbors

- n๊ฐœ์˜ ์ ์ด ์ฃผ์–ด์ง„ d์ฐจ์›์—์„œ NN์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์€ O(nd)์˜ ์‹œ๊ฐ„๋ณต์žก๋„๋ฅผ ๊ฐ€์ง„๋‹ค.

- training set์ด ์ปค์ง€๊ฑฐ๋‚˜ ์ฐจ์›์ด ์ปค์ง€๋ฉด ์‹œ๊ฐ„์ด ๊ต‰์žฅํžˆ ๋งŽ์ด ๋“ ๋‹ค.

-> grid indices, kd-trees, Voronoi diagrams, locality sensitive hashing ๋“ฑ์„ ์ด์šฉ

 

Voronoi Diagrams / Kd-trees

- Voronoi Diagrams: ๊ฐ€์žฅ ๊ทผ์ ‘ํ•œ ์ด์›ƒ์„ ๊ณต์œ ํ•˜๋Š” ์ง€์—ญ์œผ๋กœ ๊ณต๊ฐ„์„ ๋ถ„ํ• 

- kd-tree ๋“ฑ์€ ์ €์ฐจ์›์—์„œ ๊ฐ€์žฅ ๊ทผ์ ‘ํ•œ ์ด์›ƒ์„ ์ฐพ๋Š” ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค.

- ์ •ํ™•ํ•œ NN search๋Š” ์ถฉ๋ถ„ํžˆ ๊ณ ์ฐจ์›์˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š” linear research๋กœ ์ถ•์†Œ๋˜์–ด์•ผ ํ•œ๋‹ค.

 

Grid files

- ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ๋‚˜๋‰˜์–ด์ง„ ๊ฒฉ์ž์— ์ฐํžŒ ์ ์„ ๋ฒ„์ผ“ํŒ… (Bucketting) ํ•˜๋Š” ๊ฒƒ์€ ์œ ์‚ฌ์„ฑ์œผ๋กœ ์ ๋“ค์„ ๊ทธ๋ฃนํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ž„

- ์ฐจ์›์ด ์ฆ๊ฐ€ํ•˜๋ฉด index๋Š” expensiveํ•ด์ง„๋‹ค. -> ์ฃผ๋ณ€ ๊ฒฉ์ž๋“ค๋„ ๋ชจ๋‘ ํƒ์ƒ‰ํ•ด์•ผ ํ•˜๋ฏ€๋กœ, exponentialํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•  ์ˆ˜๋ฐ–์— ์—†์Œ

์™ผ: Voronoi Diagram / ์˜ค: Grid file

Locality Sensitive Hashing

- Hashing์€ ์ด์›ƒํ•˜๋Š” ์ ์ด ๊ฐ™์€ bucket์œผ๋กœ hash ๋˜์—ˆ์„ ๋•Œ NN search๋ฅผ ๋” ๋น ๋ฅด๊ฒŒ ์ง„ํ–‰๋  ์ˆ˜ ์žˆ๋„๋ก ํ•จ

* hashing: ๊ฒ€์ƒ‰์„ ๋น ๋ฅด๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด hash key ๊ฐ’์„ ๊ฐ€์ ธ์™€์„œ ๋น ๋ฅด๊ฒŒ ์ฐพ๋„๋ก ํ•จ

- normal hashing์€ distance bucket์œผ๋กœ ์œ ์‚ฌํ•œ ์ ๋“ค์„ ํผ๋œจ๋ฆผ

- Locality Sensitive Hashing (LSH): ์ ์ด๋‚˜ ๋ฒกํ„ฐ a, b๋ฅผ ๊ฐ€์ ธ์™€์„œ a๊ฐ€ b์™€ ์ธ์ ‘ํ•˜๋ฉด h(a)=h(b)์ผ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•จ.

 

LSH for points on a sphere

1) ์›์ ์„ ๊ฐ€๋กœ์ง€๋ฅด๋Š” ๋žœ๋ค ๋ฉด์„ ์„ ํƒ

2) ์„œ๋กœ ์ด์›ƒํ•ด ์žˆ๋‹ค๋ฉด ๋‘ ์ ์€ ๊ทธ ๋ฉด์˜ ๊ฐ™์€ ๋ฉด์— ์กด์žฌํ•  ๊ฒƒ์ž„. (์™ผ์ชฝ ๋˜๋Š” ์˜ค๋ฅธ์ชฝ)

3) d๊ฐœ์˜ ๋žœ๋ค ๋ฉด์— ๋Œ€ํ•œ L/R ํŒจํ„ด์€ d-bit LSH hash code๋ฅผ ์ƒ์„ฑ

์˜ˆ์‹œ๋ฅผ ์‚ดํŽด๋ณด์ž! ํŒŒ๋ž€ ์ƒ‰ ์ ์— ๋Œ€ํ•ด์„œ ์ฝ”๋“œ๋ฅผ ์‚ดํŽด๋ณผ ๊ฒƒ.

1๋ฒˆ ์„ ์„ ๊ทธ์—ˆ์„ ๋•Œ, ํ•ด๋‹น ์ ์€ ์˜ค๋ฅธ์ชฝ์— ์žˆ์–ด์„œ 0

2๋ฒˆ ์„ ์„ ๊ทธ์—ˆ์„ ๋•Œ ํ•ด๋‹น ์ ์€ ์™ผ์ชฝ์— ์žˆ์–ด์„œ 1

3๋ฒˆ ์„ ์€ ์˜ค๋ฅธ์ชฝ์ด๋ฏ€๋กœ 0

4๋ฒˆ ์„ ์€ ์™ผ์ชฝ์ด๋ฏ€๋กœ 1 --> ์ตœ์ข… LSH ์ฝ”๋“œ๋Š” 0101

 

Network data

  vertices edges
social network people friendships
WWW pages hyperlinks
Product/customer networks product, customer - bipartite graph sales
genetic networks genes interactions

 

Point Sets and Graphs

- Point set: graph๋ฅผ ์ •์˜ํ•จ -> x, y ์ ์ด ์„œ๋กœ ์ด์›ƒํ•˜๋ฉด (x, y) edge๋ฅผ ์ถ”๊ฐ€ / threshold ๊ธฐ์ค€์œผ๋กœ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊นŒ์šฐ๋ฉด ๊ธ‹๊ธฐ

- graph: point set์„ ์ •์˜ํ•จ -> ์ธ์ ‘ ํ–‰๋ ฌ์˜ SVD๋ฅผ ์ˆ˜ํ–‰

ex) 2์ฐจ์› SVD๋ฅผ ์ง„ํ–‰ํ•˜์—ฌ, ์ฃผ์„ฑ๋ถ„ 1/2๊นŒ์ง€ ๋ฝ‘์•„๋‚ด๊ธฐ

 

Classical Graph Algorithms

- ๋‘ vertices ์‚ฌ์ด์˜ ์ตœ์†Œ ๊ฑฐ๋ฆฌ๋Š” ๊ณง ๊ทธ๋ž˜ํ”„์—์„œ์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๋œ๋‹ค.

- ์ตœ์†Œ ๊ฑฐ๋ฆฌ๋ฅผ ์ฐพ๋Š” ํด๋ž˜์‹ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜, connected components, spanning trees, cuts, flows, matchings, topological sorting ๋“ฑ์ด ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ

 

PageRank

- PageRank(v, G): G์—์„œ์˜ random walk๊ฐ€ vertex v์— ๋ฉˆ์ถ˜๋‹ค๋Š” ๋œป

- ๋ฐ˜๋ณต์ ์œผ๋กœ ์ •์˜๋จ

- ์‹ค์ œ ์ƒํ™ฉ์—์„œ๋Š” ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ดํ•จ.

- ์˜ˆ) ์ค‘์š”ํ•œ ์นœ๊ตฌ๊ฐ€ ํ‘œ๋ฅผ ํฌ์†Œํ•˜๊ฒŒ ๋‚˜๋ˆ ์ค„ ๋•Œ -> ๊ณ„์† ์—…๋ฐ์ดํŠธ๊ฐ€ ๋˜์–ด ๋ณ€ํ•˜์ง€ ์•Š๊ฒŒ ๋จ (์ˆ˜๋ ด)

- centrality, importance ๋“ฑ์„ ์ธก์ •ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์ง€ํ‘œ๋กœ ์‚ฌ์šฉ๋จ

- ์˜ˆ) ์œ„ํ‚คํ”ผ๋””์•„ ํŽ˜์ด์ง€

- PageRank์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์˜์‚ฌ ๊ฒฐ์ •

* ๊ด€๋ จ์„ฑ์ด ๋–จ์–ด์ ธ๋ณด์ด๋Š” vertices/edges ํŽธ์ง‘

* outdegree๊ฐ€ 0์ธ vertices ๋‹ค๋ฃจ๊ธฐ

* random jump์„ ํ—ˆ๊ฐ€ํ•˜๋Š” ๋ฌธ์ œ: damping factor

 

Clustering

- ์ •์˜: ์œ ์‚ฌ๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ ์„ ๊ทธ๋ฃนํ™”ํ•˜๋Š” ๋ฌธ์ œ

- ์š”์†Œ๋“ค์ด ์ ์€ ์ˆ˜์˜ source๋กœ๋ถ€ํ„ฐ ์œ ๋ž˜ํ•œ ์ƒํ™ฉ์— ์ด๋Ÿฌํ•œ origin์„ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•ด ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

- ill-defined problem: ๋ณด๋Š” ์‚ฌ๋žŒ์— ๋”ฐ๋ผ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋‚˜๋ˆ„๋Š” ๊ธฐ์ค€์ด ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Œ. ์ฃผ๊ด€์ ์ธ ๋ถ€๋ถ„

- ์˜ˆ์‹œ: ์œ ์ „์ž ๋ฐ์ดํ„ฐ ๊ทธ๋ฃนํ™”

- ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์‚ฌ์šฉํ•˜๋Š” ์ด์œ 

* hypothesis development: ๋‚ด ๋ฐ์ดํ„ฐ์— ๊ตฌ๋ณ„๋˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์–ผ๋งˆ๋‚˜ ์žˆ๋Š”๊ฐ€?

* Modeling over smaller groups: ๊ฐ๊ฐ์˜ ํด๋Ÿฌ์Šคํ„ฐ์— ๋Œ€ํ•ด ๊ตฌ๋ถ„๋˜๋Š” ์˜ˆ์ธก ๋ชจ๋ธ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Œ

* Data reduction: ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์˜ centroid๋ฅผ ์ด์šฉํ•˜์—ฌ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋Œ€์ฒด/๋Œ€ํ‘œ

* Outlier detection: ์–ด๋–ค ํ•ญ๋ชฉ์ด ํด๋Ÿฌ์Šคํ„ฐ์˜ ์ค‘์‹ฌ์œผ๋กœ๋ถ€ํ„ฐ ๋ฉ€๋ฆฌ ๋–จ์–ด์ ธ์žˆ๊ฑฐ๋‚˜ ์•„์ฃผ ์ž‘์€ ํด๋Ÿฌ์Šคํ„ฐ์— ๊ฐ‡ํ˜€์žˆ๋Š”๊ฐ€?

 

K-means Clustering

- ์ •์˜: k๊ฐœ์˜ ์ ์„ ์ค‘์‹ฌ์œผ๋กœ ์ •์˜ -> ๋ชจ๋“  ํ•ญ๋ชฉ๋“ค์„ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ค‘์‹ฌ์— ํ• ๋‹น -> ์ค‘์‹ฌ์„ ๋‹ค์‹œ ๊ณ„์‚ฐ -> ์ด ๊ณผ์ •์„ ๊ณ„์† ๋ฐ˜๋ณตํ•˜์—ฌ ์ถฉ๋ถ„ํžˆ ์•ˆ์ •๋˜๋„๋ก ํ•จ

- ๋ฌธ์ œ์ : local optima์— ๊ฐ‡ํž ์œ„ํ—˜์ด ์žˆ์Œ

 

Centroids or Center Points?

- Centroid: color, gender ๋“ฑ ์ˆซ์ž๋กœ ์ •์˜๋˜์ง€ ์•Š์€ ํŠน์„ฑ์— ๋Œ€ํ•ด ๊ทธ๋ฃนํ™”๋ฅผ ์ง„ํ–‰ํ•  ๋•Œ๋Š” ๋ช…ํ™•ํ•˜์ง€ ์•Š๋‹ค.

* ๋ณดํ†ต ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ์—์„œ๋Š” one-hot encoding์œผ๋กœ ์ธ์ฝ”๋”ฉ ์ง„ํ–‰

- center๋กœ input example ์ค‘ ๊ฐ€์žฅ ๊ฐ€์šด๋ฐ์— ๊ฐ€๊นŒ์šด ์ ์„ ์ด์šฉํ•˜๋Š” ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์˜๋ฏธ์žˆ๋Š” ๊ฑฐ๋ฆฌ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜๊ธฐ๋งŒ ํ•œ๋‹ค๋ฉด k-means๋ฅผ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ด๋‹ค.

 

How Many Clusters?

- ์˜ฌ๋ฐ”๋ฅธ ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ฐœ์ˆ˜๋Š” ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์ง„ํ–‰ํ•˜๊ธฐ ์ „์—๋Š” ์•Œ ์ˆ˜ ์—†๋‹ค.

- ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋”ํ•ด๊ฐˆ ๋•Œ, ์ ๊ณผ ์ค‘์‹ฌ ์‚ฌ์ด์˜ MSE ๊ฐ’์€ ์ ์ง„์ ์œผ๋กœ ๊ฐ์†Œํ•ด์•ผ ํ•œ๋‹ค.

- ์˜ฌ๋ฐ”๋ฅธ ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ฐœ์ˆ˜๋ฅผ ์ดˆ๊ณผํ•˜๊ฒŒ ๋˜๋ฉด MSE ๊ฐ’์ด ๊ฐ์†Œํ•˜๋Š” ์†๋„๊ฐ€ ๋Š๋ ค์ง„๋‹ค.

elbow method๋กœ ์ตœ์  ํด๋Ÿฌ์Šคํ„ฐ ๊ฐœ์ˆ˜ ๊ตฌํ•˜๊ธฐ

K-means์˜ ํ•œ๊ณ„

- nested cluster, long thin cluster์— ๋Œ€ํ•ด์„œ ์ข‹์ง€ ์•Š์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„

- ๋ฐ˜๋ณต์ ์œผ๋กœ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์€ local optima๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•จ (random seed ๊ฐ’์„ ๋‹ฌ๋ฆฌ ํ•จ)

 

Expectation Maximization (EM)

- EM ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์‹œ๊ฐ€ K-means

- E-step: ์ถ”์ •๋˜๋Š” ํด๋Ÿฌ์Šคํ„ฐ์— ์ ์„ ํ• ๋‹น

- M-step: ํ• ๋‹น์„ ์ด์šฉํ•˜์—ฌ parameter ์ถ”์ •์„ ํ–ฅ์ƒ์‹œํ‚ด

 

Agglomerative Clustering

- ์ด๋Ÿฐ bottom up ๋ฐฉ์‹์€ ๋ฐ˜๋ณต์ ์œผ๋กœ 2๊ฐœ์˜ ๊ทผ์ ‘ํ•œ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋ณ‘ํ•ฉ์‹œํ‚ด

 

๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ํด๋Ÿฌ์Šคํ„ฐ๊ฐ€ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ

- ๋ณดํ†ต Average, Centroid ๋ฐฉ์‹์„ ์ฑ„ํƒ

 

Linkage Criteria

Advantages of Cluster Hierachies

- ํด๋Ÿฌ์Šคํ„ฐ ๋ฐ ์„œ๋ธŒํด๋Ÿฌ์Šคํ„ฐ์˜ ์กฐ์งํ™”

- ํด๋Ÿฌ์Šคํ„ฐ๋ง ๊ณผ์ • ์‹œ๊ฐํ™”

- ์ƒˆ๋กœ์šด ํ•ญ๋ชฉ์˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ํšจ์œจ์ ์œผ๋กœ ํ•  ์ˆ˜ ์žˆ์Œ

 

์–ด๋–ค ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ• ๊นŒ?

- ์˜ฌ๋ฐ”๋ฅธ ๊ฑฐ๋ฆฌ ํ•จ์ˆ˜ ์‚ฌ์šฉ

- ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋ณ€์ˆ˜๋ฅผ ์ •๊ทœํ™”

- ์ตœ์ข… ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์‹œ๊ฐํ™”ํ•ด์„œ ์ œ๋Œ€๋กœ ๋˜์—ˆ๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ

'School/COSE471 ๋ฐ์ดํ„ฐ๊ณผํ•™' Related Articles +